Evaluation & Management of Urolithiasis

大林慈濟醫院 翁慧鈴

Outline

- Etiology of stone urolithiasis
- Risk factors for stone disease
- Various types of stones
- Symptomatology
- Evaluation
- Management of urolithiasis
- Preventions of urolithiasis

Etiology of urolithiasis

- 1. Supersaturation: Urine becomes oversaturated with a type of solute, which then comes out of solution (crystallization)
- 2. Inhibitor deficiency: Urine normally has substances which block crystallization (eg: citrate, magnesium, pyrophosphate, sulfate)
 - Dietary deficiencies
- **3.** Neucleation theory:process by which free ions in solution associate into microscopic particles. Crystallization can occur in solution micro-environments

Risk factors

- Dehydration
 - Majority of the stones formation
 - Occupations: high temperature
 - Geographic location: high temperature, summer
- Anatomic obstruction and urinary stasis
- Metabolic / Urine composition
 - Urinary pH
 - Increased stone formation substances: Ca, oxalate, uric acid
 - Decreased stone inhibiting substances: citrate, Mg
- Diet: fatty acid, animal protein

- Urinary tract infection
 - Urease producing organisms: Proteus, Klebsiella, Pseudomonas, Serratia
- Sedentary lifestyle/ immobilization
 - Increased bone reabsorption \rightarrow high Ca level in urine
- Related diseases:
 - Sarcoidosis
 - Hyperparathyroidism
 - Inflammatory bowel disease
 - Chronic diarrhea
 - s/p Gastric bypass
 - Cystinuria
 - Gout
- Medications: HIV Protease inhibitors: Indinavir and Nelfinavir, Topiramate, vitamin C, vitamin D, triamterene, furosemide, acetazolamide, probenicid

Types of stones

1. Calcium-based: ~80% of all stones

- I. Calcium oxalate
 - Most common stone formed in industralized nations
 - Most common type of bladder stone
 - Radio-opaque
 - Very difficult to dissolve
 - dehydration: common influential factor
- II. Calcium phosphate
 - ~10% of calcium stones
 - Influential factors: hyperparathyroidism, UTI, dehydration

2. Non-calcium-based

- I. Uric acid ~8%
 - Pure form \rightarrow radiolucent
 - Form in acidic urine (pH< 6.0)
 - Dissolves with alkalization of urine
 - Common influential factor: dehydration
 - Patients usually have normal plasma and urine uric acid level
- II. Struvite stone (10%)
 - infectious stones: Proteus, Pseudomonas, Providencia, Klebsiella and Staphylococcus infection
 - Associated with UTI
 - Majority with staghorn calculi
 - Form in alkaline urine
 - Radio-opaque
- III. Cystine (1%)
 - Caused by cystinuria: homozygous recessive disorder
 - Formes in acidic urine
 - Dissolves with urinary alkalization
 - Radio-opaque
 - Resistant to Extracorporeal Shock Wave Lithotripsy (ESWL)
 - May forms staghons
- IV. Indinavir, protease inhibitor
 - Medication for HIV
 - Radio-lucent in non-contrast CT

Symptoms

- NOT all the patients with stones have symptoms
- Stone become symptomatic when:
 - Cause obstruction and irritation
 - Typical sites of obstructions:
 - 1. Ureteral pelvic junction (UPJ)
 - 2. Ureter cross over internal iliac vessels
 - Ureteral vesical junction (UVJ)
 - Associated with infection

Classic symptoms:

- Obstruction → acute, colicky pain
 - Can be severe
 - May have associated with nausea vomiting
 - Location of pain suggested location of stone impaction
 - Flank
 - Abdomen
 - Radiate to groin or testicle
- Irritation urothelial lining \rightarrow hematuria
 - Gross or microscopic
- Irritation of bladder lining \rightarrow lower urinary tract symptoms
 - Frequency, urgency, dysuria
- If associated with infection \rightarrow fever

Evaluation:

- 1. Laboratory tests:
 - CBC, BUN, Creatinine, urine analysis (urine culture: if UTI), blood culture if febrile
- 2. Imaging:
 - Non-contrast CT
 - First line diagnostic test
 - Location of stone
 - Stone size
 - Identify signs of obstruction: hydronephrosis and hydroureter
 - KUB, intravenous pyelogram (IVP), ultrasound

Management

1. Conservative treatment

- Candidates:
 - Afebrile, pain controlled, no overt signs of infection or renal compromise
- Medical management
 - Oral hydration
 - analgesics: NSAIDS
 - Alpha-blockers: Silodosin, Tamsulosin
 - relaxes ureteral smooth muscle
 - Increase stone passage rates up to ~44%
 - Decreases time to stone passage by 2-4 days
 - Decreases pain associated with stone passage
- Re-evaluate with imaging ~4-6 weeks
 - If still obstruction \rightarrow intervention becomes necessary

Table 3: Chance of Passing Ureteral Stones		
Stone size (mm)	Number of days to pass stone (mean)	% Likelihood of eventual need for intervention
? or less	8	3
5	12	14
-6	22	50
6		99%

- Patients with active infection
 - Initial treatment
 - Antibiotics
 - Drainage of kidney
 - Ureteral stent
 - Percutaneous nephrostomy tube
 - Proceed to surgical intervention of stone removal after infection is resolved

Double J ureteral stents

Percutaneous nephrostomy tube

- Treatment strategy based on: stone size and location
- Kidney and ureteral stones:
 - Extracorporeal Shock Wave Lithotripsy (ESWL)
 - Percutaneous nephrolithotomy with lithotripsy (PCNL)
 - Retrograde (flexible) URS stone (RIRS)
 - Ureteroscopy with lithotripsy/ extraction
 - Open surgery (rare)
- Bladder stones:
 - Cystolitholapaxy
 - Cystolithotomy (open surgery)

Extracorporeal Shock Wave Lithotripsy (ESWL)

- Most common first line treatment for renal stone
- Indication: renal or ureteral stone <1.5-2.0cm
- Contraindiction:
 - Pregnancy
 - Coagulopathy
 - AAA(>4cm)
 - Cystine, infection stones (relative contraindication)
- Advantages:
 - Non-invasive
 - Outpatient intervention
- Diadvantages:
 - Self-passage stone fragments
- Complications
 - Steinstrasse 4-9%: may require 2nd intervention
 - Hematoma: renal or retroperitoneal

Percutaneous nephrolithotomy with lithotripsy (PCNL)

- Indications:
 - Renal pelvic calculi
 - Staghorn stone
 - Proximal ureteral stone >1cm
 - UPJ obstruction
- Contraindication:
 - Coagulopathy
- Advantages
 - High stone free rate
 - Renal stones 95%
 - Ureteral stones 75%
- Disadvantages:
 - Anesthesia
 - Overnight hopsital stay
 - Ureteral stent and/or nephrostomy tube in perioperative period

- Complications with PCNL
 - Bleeding
 - Transfusion rate: 3%
 - Hemodynamically unstable: back to OR
 - Hemodynamically stable:
 - Clamp PCN tube for tamponade bleeding
 - Angiography and embolization
 - Pneumothorax/ hydrothorax
 - Percutaneous access
 - Signs: pleuritic chest/flank pain, loss of breath sounds, respiratory distress/ desaturiation

- Bowel injury
 - ~0.2% risk
 - Colonic injury more common
 - Intraoperative detection: contrast in colon with nephrostogram
 - Postoperative signs: fecaluria, pneumaturia, peritoneal signs, fever, ileus, leukocytosis
- Renal pelvis laceration/ perforation
 - occur during dilatation of percutaneous tract
 - Post-operatively: placement of large bore nephrostomy tube until tract closes

Retrograde (flexible) URS stone (RIRS)

- Indications:
 - Renal stones <2cm
 - Lower calyx stone
 - Anticoagulated patient
 - Morbid obesity
 - Ectopic or horseshoe kidney
 - Evaluation of upper urinary tract malignancy
- Contraindications:
 - Infection
 - Relative: coagulopathy

Ureteroscopy with lithotripsy/ extraction

- Indications:
 - Ureteral stones <8mm stone
- Advantages:
 - short hospital stay
 - High success rate of stone removal66-100%
- Disadvantages
 - Anesthesia
 - possible need for ureteral stent placement

- Complications:
 - Ureteral false passage 0.4-0.9%
 - Ureteral perforation 1-15%
 - Avulsion ~0.3%
 - Ureteral stricture 0-4%

Treatment algorithm for ureteral stones (if active stone removal is indicated)

Treatment algorithm for renal stones (if/when active treatment is indicated)

Management of Acute Renal Colic

Non-Contrast CT of Abdomen & Pelvis

Preventions:

- Oral fluid intake
 - Keep urine volume 2-3L/day
- low sodium diet
- Low animal protein diet
- low oxalate diet
 - Chocolate, tea, spinachm rhubarb, nuts, beets
- Moderate calcium intake
 - 800-1000mg/day
- Specific recommendations based on metabolic evaluation

- Oral medication
 - Alkalinizing pH agent: phophate citrate
 - GI absorption inhibitor: Cellulose phosphate
 - Phosphate supplementation
 - Diuretics: Thiazide
 - Calcium supplementation: calcium gluconate
 - Uric acid-lowering medication: allopurinol
 - Urease inhibitor: acetohydroxamic acid prevent struvite stone

Take home message

1. Stone formation theory: supersaturation, nucleation, crystal inhibitor

- 2.Most common types of stone: calcium based 80% \rightarrow calcium oxalate
- 3.Urinary calculi typically symtomps: renal colic and hematuria frequently accompanied by nausea and vomiting
- 4. The unenhanced CT is the single best initial diagnostic imaging test.
- 5.Clinicians should initially assess the need for urgent intervention as well as the likelihood of spontaneous stone passage.
- 6.Urologic intervention must be individualized
- 7.Metabolic risk of stone recurrences should be addressed in repeat stone formers, children and in some motivated first-time stone formers