Underactive Bladder & Detrusor Underactivity

Yuan-Hong Jiang, M.D.

Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien Taiwan

Definitions of DU and UAB

Detrusor underactivity (DU)

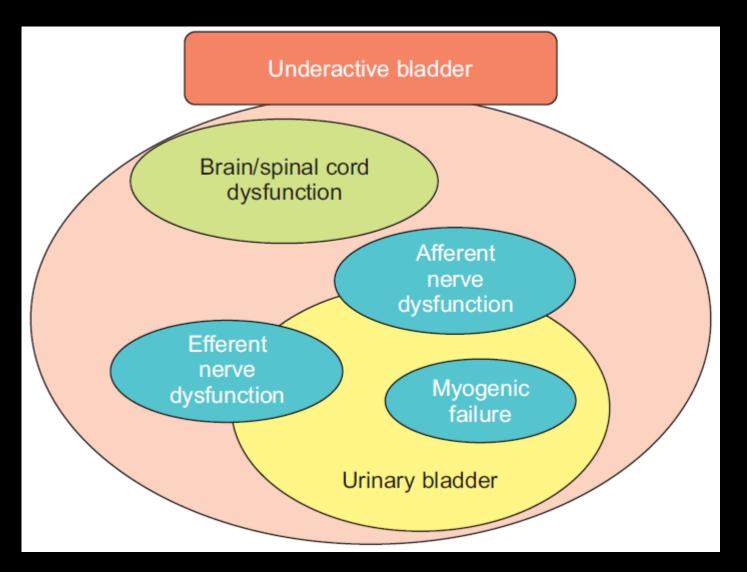
 Contraction of reduced strength and/or duration, resulting in prolonged bladder emptying and/ or failure to achieve complete bladder emptying within a normal time span

(UDS diagnosis)

Neurourol Urodyn. 2002;21(2):167

Underactive bladder (UAB)

 A slow urinary stream, hesitancy, and straining to void, with or without a feeling of incomplete bladder emptying, sometimes with storage symptoms


(Symptom diagnosis)

Eur Urol. 2015 Sep;68(3):351

Consistence

between the clinical presentation of DU patients & UAB working definition

Mechanisms Involved in DU/ UAB

- Myogenic failure:
 loss of intrinsic contractility
- **Efferent nerve dysfunction:** impaired activation of detrusor
- ## Afferent nerve dysfunction: failure / early terminate of voiding reflex
- **Brain/ spinal cord dysfunction:** failure of integration processing

Etiologies of Detrusor Underactivity

Idiopathic

Normal ageing

Unknown factors in younger people

Neurogenic injury and/or disease

Vascular

Stroke (early phase)

Degenerative

- Parkinson disease
- Multisystem atrophy

Demyelinating neuropathies

Multiple sclerosis

Peripheral neuropathies

- Guillain-Barré syndrome
- Neurosyphilis (tabes dorsalis)
- Herpes zoster and herpes simplex
- Diabetes mellitus
- AIDS

Spinal cord and cauda equina

- Intravertebral disc prolapse
- Cauda equina lesions
- Spinal cord tumours
- Spinal canal stenosis
- Spinal cord injury
- Sacral fracture

Pelvic fracture

Pudendal nerve injury (bilateral)

Myogenic

Bladder outlet obstruction

Diabetes

latrogenic

Radical pelvic surgery

- Radical prostatectomy
- Radical hysterectomy
- Anterior resection, abdomino-perineal resection

Radiation therapy

Functional

- Fowler's syndrome
- Dysfunctional voiding

Pharmacotherapy

Drugs with anticholinergic effects

- Antimuscarinics
- Antihistamines
- Antipsychotics
- Antiparkinson medications
- Antispasmodics
- Tricyclic antidepressants

Opioids

Aging-related changes in DU

Altered bladder/ detrusor morphology and function

- ♦ ↑ collagen deposition
- ♦ ↓ ratio of muscle to connective tissue, ↑ fibrosis
- Altered detrusor contractility (rats)
- "a dense band pattern"
- weaker contractile responses to carbachol and electrical field stimulation related to decreased cholinergic mediated contraction, lower muscarinic M3 receptor mRNA expression (rats)

Neurologic changes

- ightharpoonup axon density of the human detrusor muscle
- ♦ ↓ autonomic bladder innervation

Decline in sensory function

- † threshold of bladder capacity
- ♦ ↓ bladder response to filling

Aging-related changes in DU

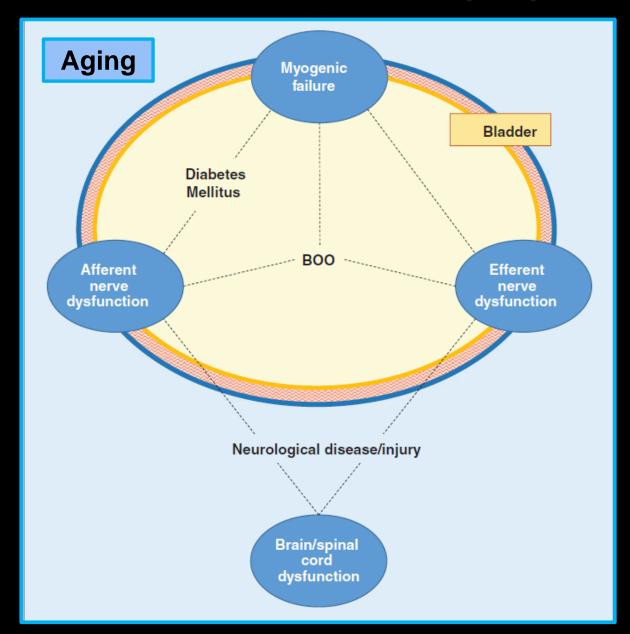
Altered bladder/ detrusor morphology and function

- ♦ ↑ collagen deposition
- \bullet \downarrow ratio of muscle to connective tissue, \uparrow fibrosis
- Altered detrusor contractility (rats)
- "a dense band pattern"
- weaker contractile responses to carbachol and electrical field stimulation related to decreased cholinergic mediated contraction, lower muscarinic M3 receptor mRNA expression (rats)

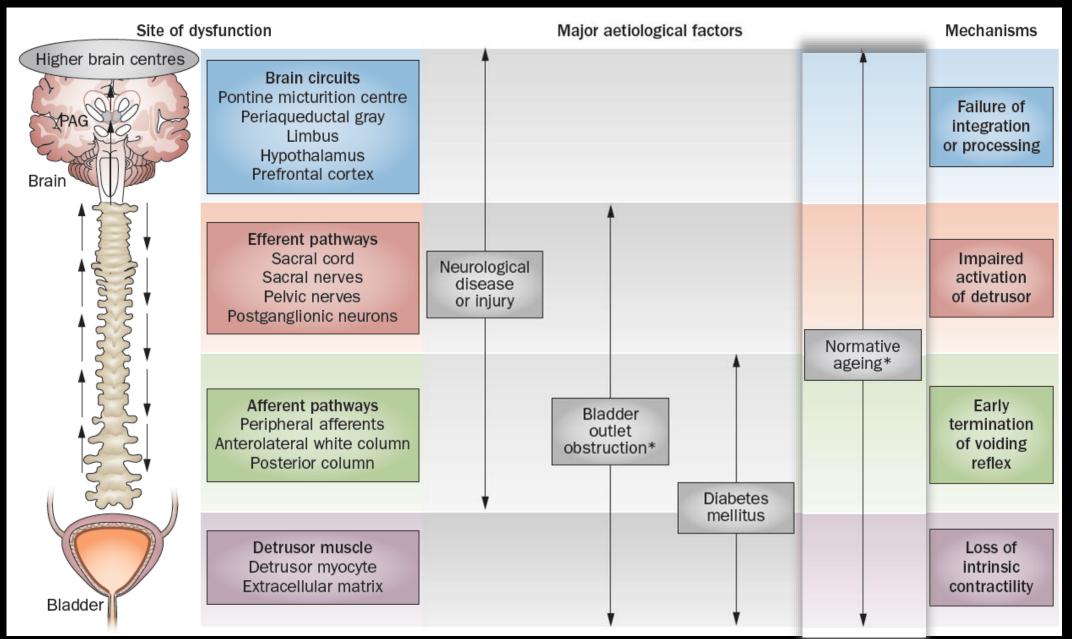
Neurologic changes

Decline in sensory function

Athrophold of bladdon napacity


- ◆ ↓ axon density
- ♦ ↓ autonomic b

However,


- some contradictory results
- not strong evidence support

lling

Unclear "exact" role of aging in DU

Major etiologies, sites of dysfunction and pathogenic mechanisms in DU

Pathophysiology of DBD (Diabetic bladder dysfunction)

Polyuria/ Diuresis

- → Bladder hypertrophy (physical adaptation)
- → also ↑oxidative stress

(Chronic) Hyperglycemia

- → excess oxidative stress & ROS
- → ↑cellular damage, accumulation of toxic metabolites

Detrusor, neuronal, urothelial, and microvascular alternations/ damages

- **Detrusor myocyte:** abnormalities in intracellular connections & excitability, intracellular signaling, receptor density and distribution
- Nerve: destruction of nerve fibers, ↓nerve density
- Urothelium: altered receptor & neurotransmitters released
- Microvascular damage: damaging urothelium, muscle, and nerve

DBD Temporal Theory

(time dependent changes of diabetic uropathy)

Early Phase

Late Phase

Compensated Function Decompensated Function

Time Course/Risk factors ??

Clinical: Storage problems Voiding Problems

Urodynamics: Overactive Bladder Atonic Bladder

In-vitro: Hypercontractile Detrusor Hypocontractile Detrusor

DBD Temporal Theory

(time dependent changes of diabetic uropathy)

Early Phase → Late Phase

Compensated Function Decompensated Function

Time Course/Risk factors ??

Clinical: Storage problems Voiding Problems

Urodynamics: Overactive Bladder Atonic Bladder

In-vitro: Hypercontractile Detrusor Hypocontractile Detrusor

DBD Temporal Theory

(time dependent changes of diabetic uropathy)

Compensated Function

Decompensated Function

Late Phase

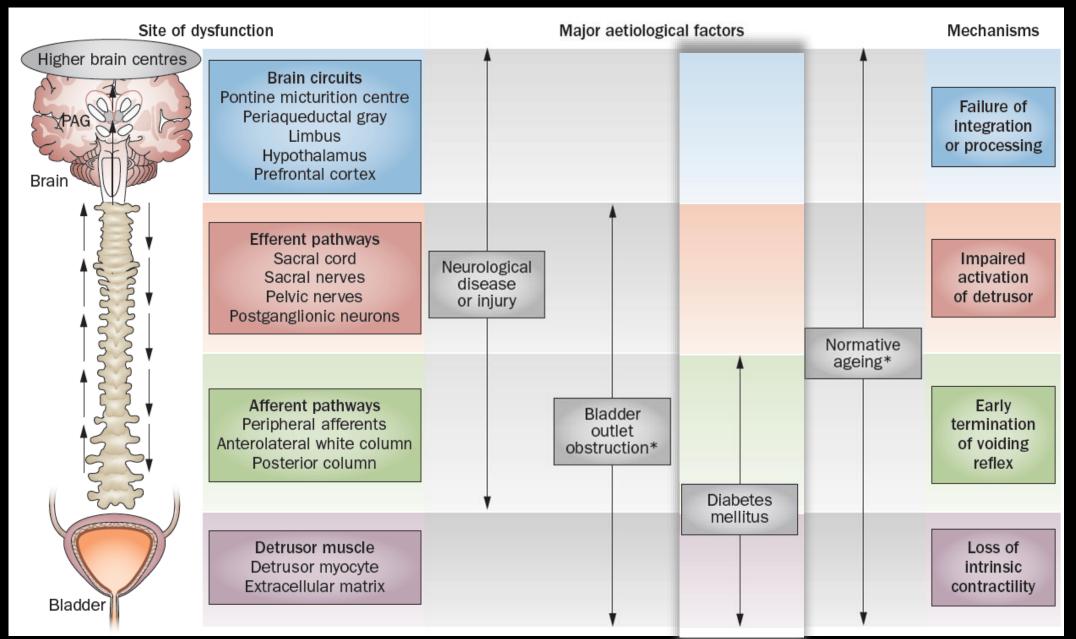
Time Course/Risk factors ??

Clinical: Storage problems

Urodynamics: Overactive Bladder

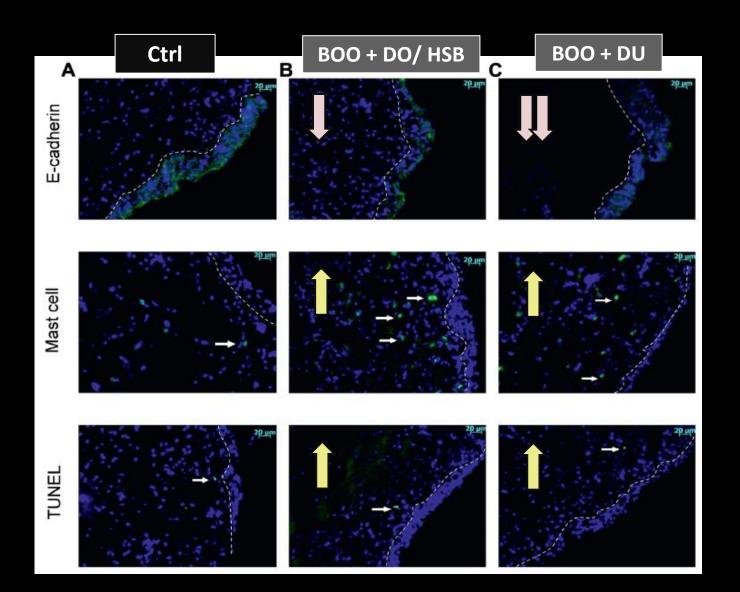
In-vitro: Hypercontractile Detrusor

Voiding Problems


Atonic Bladder

Hypocontractile Detrusor

Decompensated DBD (triad)


- ♦ ↓ bladder sensation
- 个bladder capacity
- Jetrusor contractility Juan

Major etiologies, sites of dysfunction and pathogenic mechanisms in DU

BOO with bladder dysfunction:

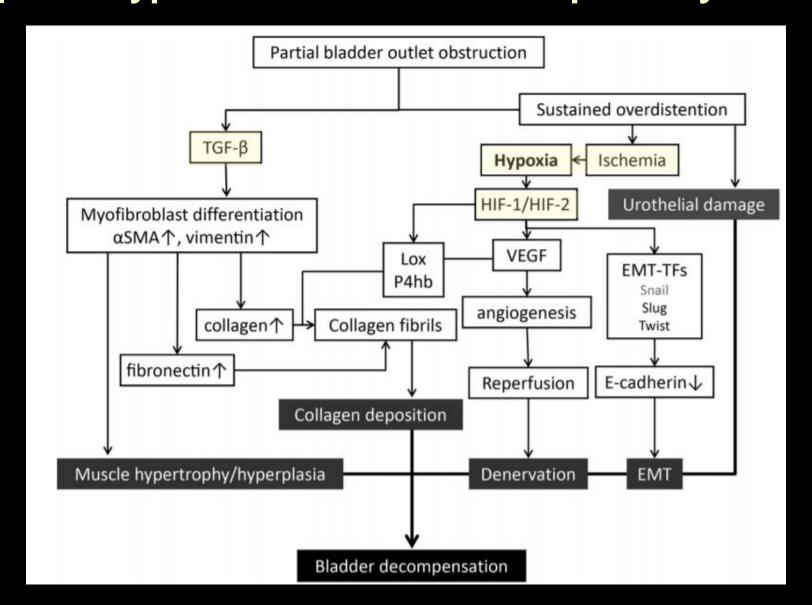
Urothelial dysfunction, suburothelial inflammation, cellular apoptosis

BOO with bladder dysfunction: Altered sensory protein expression in the bladder mucosa

			B00	p Value		
	Control	Overall	DO/HSB	DU	Control vs BOO	DO/HSB vs DU
No. pts	10	33	23	10	_	_
Mean ± SD age	64.6 ± 11.45	68.5 ± 11.1	69.0 ± 11.6	67.5 ± 10.5	0.258	0.764
Mean ± SD immunofluorescence:	07.70 . 40.40	45.00 + 40.00	40.05 + 40.00	0.04 + 0.57*	0.045	0.000
E-cadherin	27.70 ± 10.42	15.93 ± 13.20	18.85 ± 13.60	$9.21 \pm 9.57*$	0.015	0.038
Tryptase	4.16 ± 2.68	15.12 ± 7.89	$16.11 \pm 6.16*$	12.84 ± 10.96	0.000	0.652
TUNEL	0.85 ± 1.31	2.64 ± 2.57	$2.47 \pm 2.41*$	3.03 ± 3.01	0.028	0.844
Mean ± SD Western blot:						
ZO-1	6.90 ± 1.82	7.83 ± 3.98	7.29 ± 2.58	9.08 ± 6.14	0.358	0.570
TRPV 1	0.131 ± 0.070	0.139 ± 0.096	0.137 ± 0.102	0.145 ± 0.084	0.840	0.695
TRPV 4	0.188 ± 0.286	0.155 ± 0.243	0.152 ± 0.249	0.164 ± 0.241	0.565	0.570
iNOS	0.258 ± 0.325	0.171 ± 0.332	0.219 ± 0.389	$0.062 \pm 0.039*$	0.128	0.147
eNOS	0.094 ± 0.088	0.104 ± 0.096	0.119 ± 0.107	0.071 ± 0.058	0.885	0.254
P2X3	0.097 ± 0.109	0.257 ± 0.206	0.247 ± 0.145*	0.278 ± 0.315*	0.001	0.456
β3	0.878 ± 0.584	1.012 ± 0.415	0.864 ± 0.269	$1.35 \pm 0.499*$	0.289	0.009
M2	0.405 ± 0.303	0.912 ± 1.043	$1.073 \pm 1.184*$	0.558 ± 0.490	0.041	0.108
M3	1.593 ± 0.708	0.797 ± 0.342	$0.703 \pm 0.308*$	$1.013 \pm 0.330*$	0.000	0.024
M2/M3	0.313 ± 0.280	1.371 ± 1.610	1.691 ± 1.796*	0.634 ± 0.685	0.001	0.012

BOO + DU vs BOO + DO/ HSB:

↑ β3 receptor, ↑ M3 receptor,↓ M2/M3 ratio

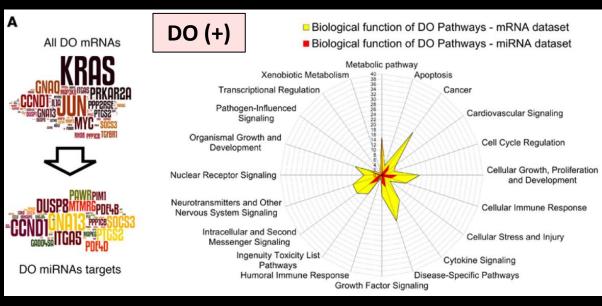

BOO with bladder dysfunction: Altered sensory protein expression in the bladder mucosa

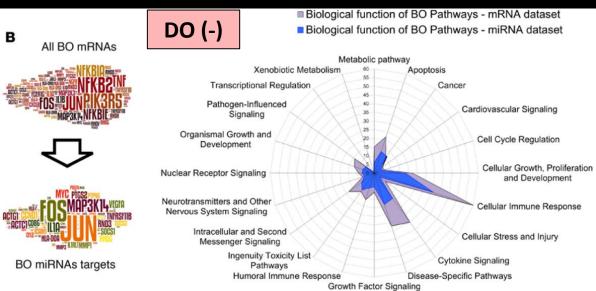
			B00	p Value		
	Control	Overall	DO/HSB	DU	Control vs BOO	DO/HSB vs DU
No. pts	10	33	23	10	_	_
Mean \pm SD age	64.6 ± 11.45	68.5 ± 11.1	69.0 ± 11.6	67.5 ± 10.5	0.258	0.764
Mean ± SD immunofluorescence:	07.70 . 40.40	45.00 . 40.00	40.05 + 40.00	0.04 . 0.57*	0.045	0.000
E-cadherin T-	27.70 ± 10.42	15.93 ± 13.20	18.85 ± 13.60	9.21 ± 9.57*	0.015	0.038
Tryptase	4.16 ± 2.68	15.12 ± 7.89	16.11 ± 6.16*	12.84 ± 10.96	0.000	0.652
TUNEL	0.85 ± 1.31	2.64 ± 2.57	$2.47 \pm 2.41*$	3.03 ± 3.01	0.028	0.844
Mean ± SD Western blot: Z0-1						0.570
TRPV 1						0.695
TRPV 4 Impaired	d signaling	and senso	ry transduc	tion nathwa	vs annea	0.570
iNOS -				_		0.147
eNOS to refl	ect the paf	thophysiolo	gy of DU in	patients wi	th BOO.	0.254
P2X3	•	. ,		•		0.456
β3						0.009
M2	U.700 <u> </u>	U.U1Z	1.070 <u> </u>	U.UUU U.TUU	0.011	0.108
M3	1.593 ± 0.708	0.797 ± 0.342	$0.703 \pm 0.308*$	1.013 ± 0.330*	0.000	0.024
M2/M3	0.313 ± 0.280	1.371 ± 1.610	1.691 ± 1.796*	0.634 ± 0.685	0.001	0.012-

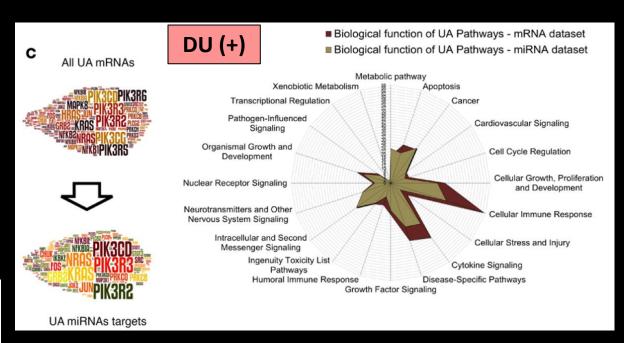
BOO + DU vs BOO + DO/ HSB:

↑ β3 receptor, ↑ M3 receptor,↓ M2/M3 ratio

Roles of activation of TGF-β and hypoxia-inducible factors pathway in BOO

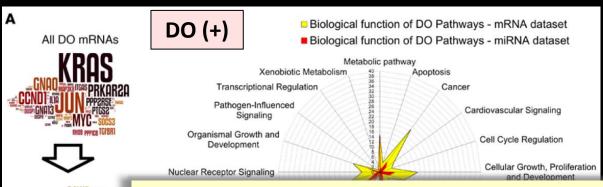


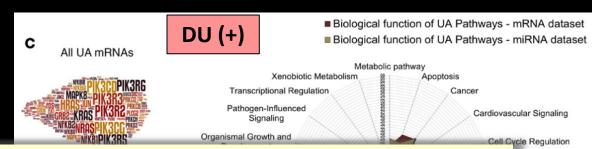

Key signaling pathways defining bladder remodeling in BOO


Pathways	DO		во		UA		BOO vs. C	
	-log(P value)	Z score						
ERK5 signaling	6.88	2.828	2.22	2.449	7.66	2.887	3.19	2.449
PI3K/AKT signaling ^A	4.43	1.89	2.11	-0.632	4.21	3	2.34	1.414
Protein kinase A signaling	3.7	0.775	1.93	0.229	3.39	1.59	1.29	0
Colorectal cancer metastasis signaling ^A	3.51	2.111	3.93	3.674	9.16	4.111	5.41	3.411
Cholecystokinin/gastrin-mediated signaling ^A	3.42	2.646	3.33	3.051	4.89	4.644	3.57	3.317
TGF-β signaling	2.99	2.449	2.33	0.632	2.64	1.877	2.86	1.414
IGF-1 signaling	2.75	1	1.58	0.447	4.85	2.268	1.53	0
HGF signaling ^A	2.57	2.236	1.39	1.89	3.55	4.382	2.3	2.121
STAT3 pathway	2.56	1.342	1.39	0.378	2.39	0.408	2.16	-0.378
Pancreatic adenocarcinoma signaling	2.55	2	2.63	2.309	5.94	4.004	3.39	3
HMGB1 signaling ^A	2.29	2.236	7.96	3.71	6.22	4.523	8.37	3.771
IL-1 signaling	2.15	2.236	2.19	1.897	5.01	4.131	1.66	2.449
Acute phase response signaling ^A	2.14	1.89	5.85	1.789	7.91	4.18	6.59	3.153
Endothelin-1 signaling ^A	2.1	2.646	3.24	2	3.99	2.828	1.77	3.162
IL-8 signaling ^A	1.95	2.646	6.29	4.2	9.32	5.253	3.75	3.357
Chemokine signaling	1.84	1	1.91	2.828	2.31	2.858	2.22	2.646
JAK/STAT signaling ^A	1.82	1	2.94	0	5.63	2.335	3.47	1
Prolactin signaling	1.8	1	1.84	1.134	4.57	3.157	2.76	1.134
IL-6 signaling ^a	1.73	1.342	11.3	3.4	10.9	5.357	7.04	3.153
Production of nitric oxide and reactive oxygen species in macrophages	1.49	0	8.9	2.117	7.88	6.155	3.35	3.357
PPAR signaling ^a	1.45	-2	6.21	-2.668	5.01	-3.55	2.63	-3
ILK signaling ^A	1.43	1.342	7.35	1	2.19	3.355	2.31	3.162

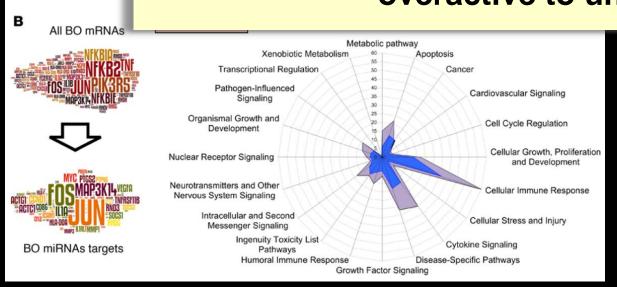
AThese pathways contain at least 3 of 4 of the most representative signaling molecules: JUN, NRAS, PTGS2, and NFKB2. BOO, all bladder outlet obstruction patients (n = 18 patients); DO, BOO patients with urodynamically determined detrusor overactivity; BO, BOO patients without detrusor overactivity; UA, underactive bladder; C, controls (n = 6 patients per group). LUTD, lower urinary tract dysfunction.

Roles of miRNA in different states of BOO-induced bladder dysfunctions


miRNA and mRNA expression profiles in BOO patients:


DO(+) < DO(-) < DU(+)

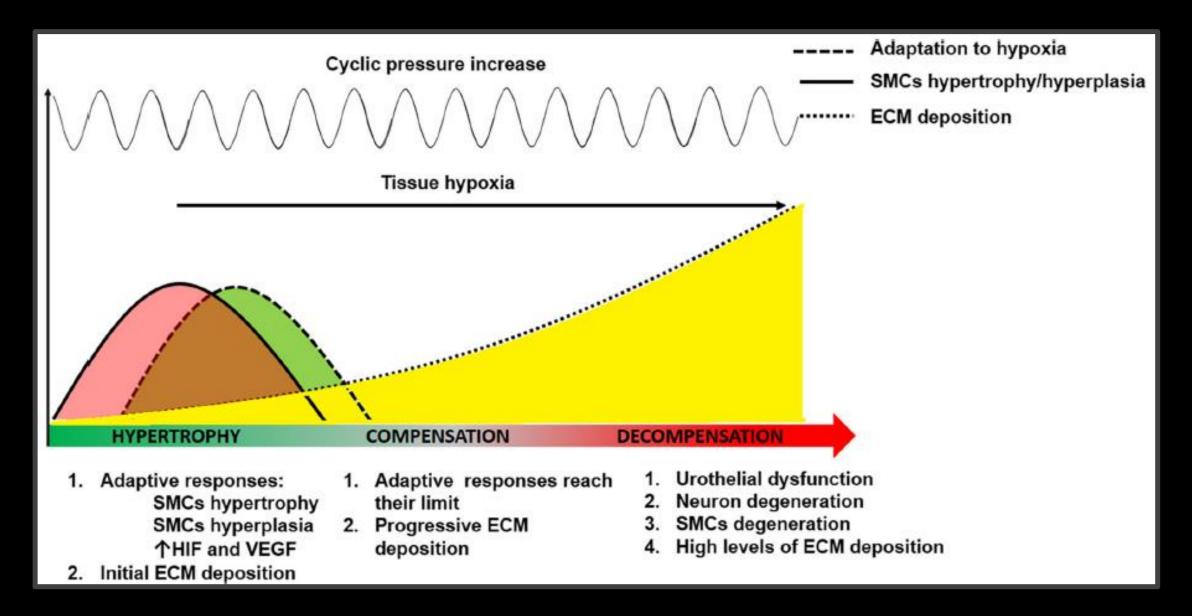
Roles of miRNA


DO miRNAs targets

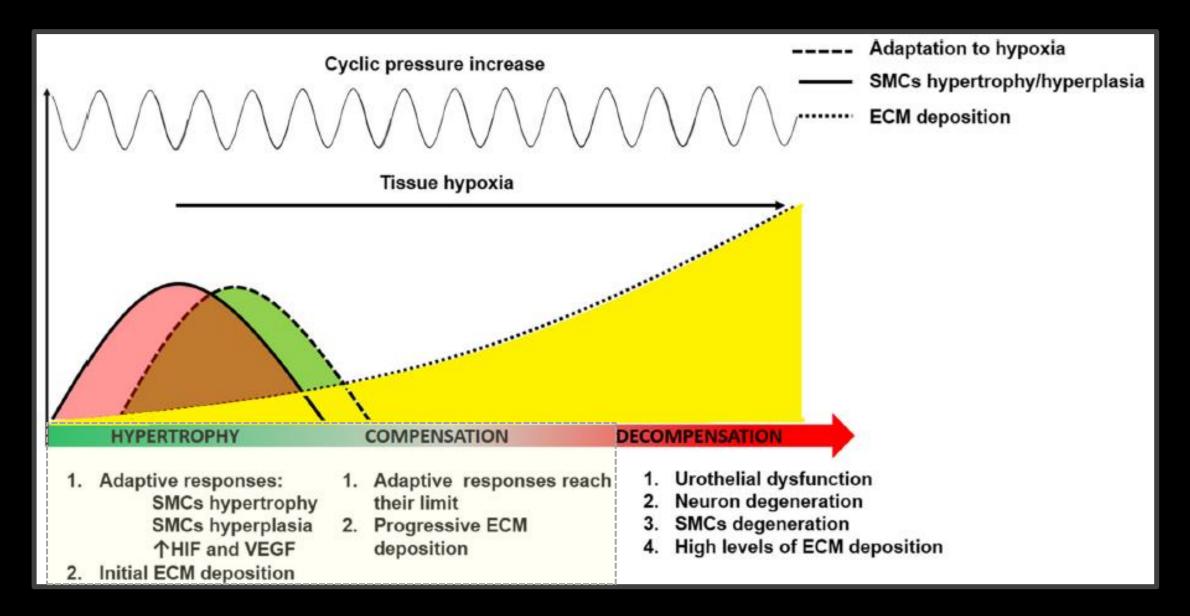
in different states of BOO-induced bladder dysfunctions

Molecular changes in BOO suggest an increasing involvement of miRNAs in the control of bladder function from the overactive to underactive states.

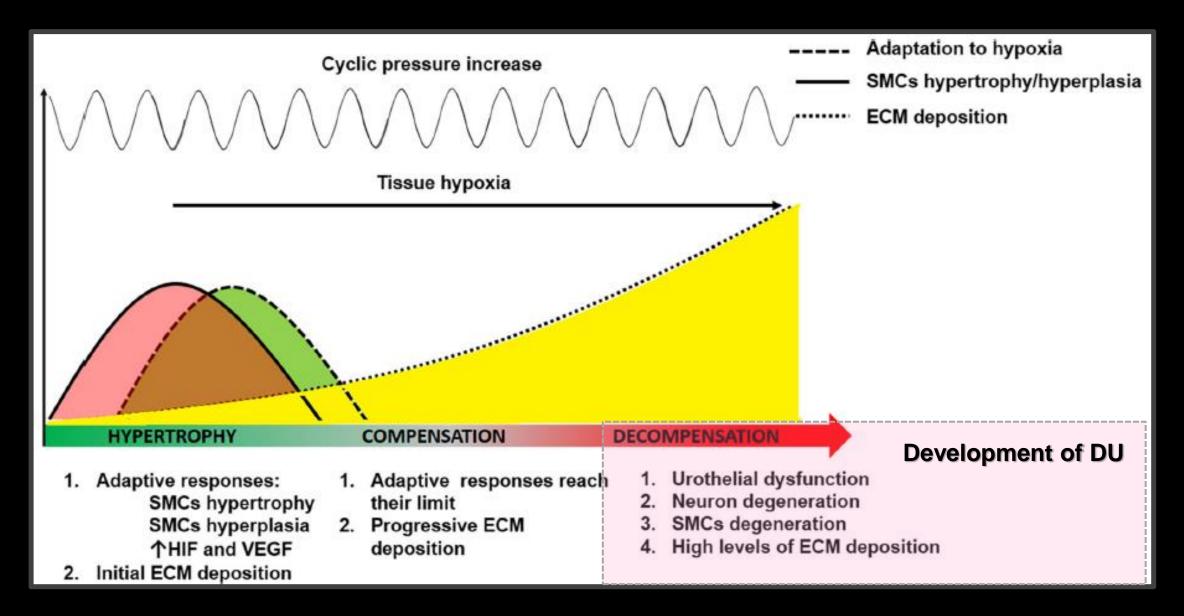
miRNA and **mRNA** expression profiles in BOO patients:

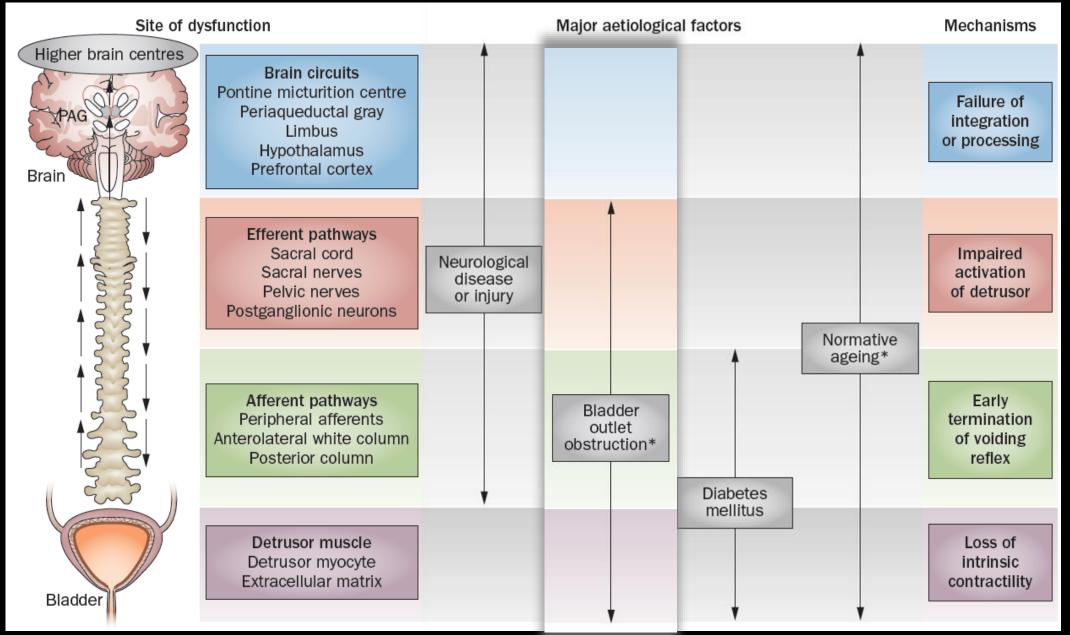

DO(+) < DO(-) < DU(+)

ar Growth, Proliferation and Development


mmune Response

ss and Injury


Proposed 3-stage model for BOO-induced bladder remodeling


Proposed 3-stage model for BOO-induced bladder remodeling

Proposed 3-stage model for BOO-induced bladder remodeling

Major etiologies, sites of dysfunction and pathogenic mechanisms in DU

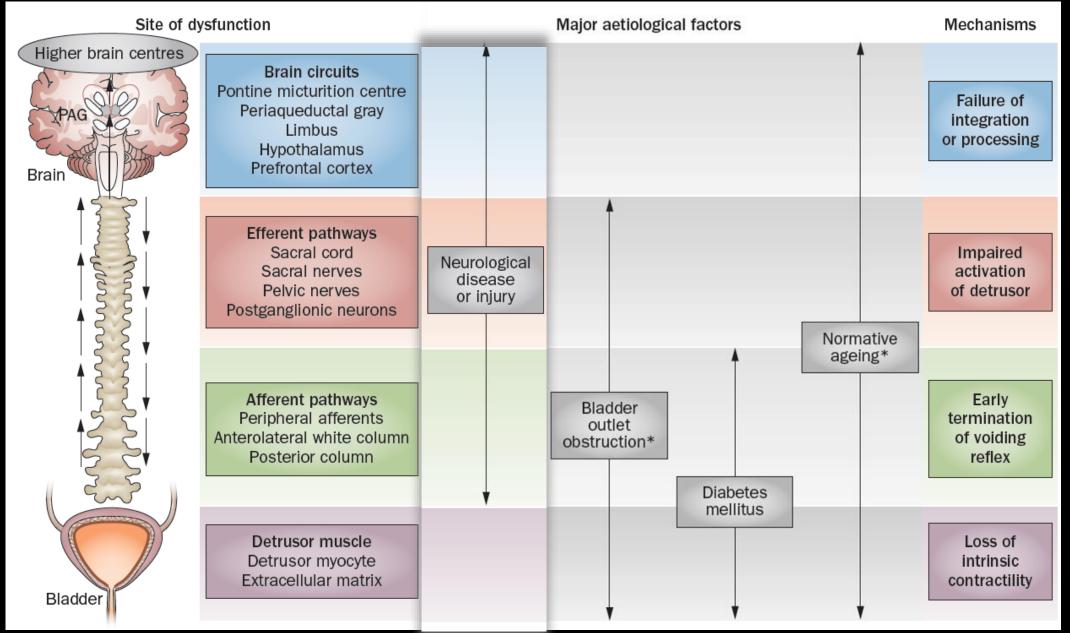
Neurological disease/injury leading to DU

CVA (stroke):

- 50% urinary retention in acute setting (75%: acontractility) (cerebral shock)
- DO: most common long term bladder dysfunction
- **Parkinson disease: < 20%** DU
- Multisystem atrophy: 52-95% DU (atrophy of efferent nerve system)
- Multiple sclerosis: 20% DU (plaque in LS cord)
- LS cord trauma/ HIVD
- Radical urological, gynecological, or rectal surgery (pelvic plexus injury)
- **Infectious disease of nervous system**

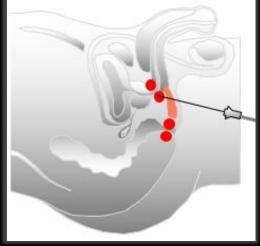
(Guillain-Barré syndrome or herpes zoster, neurosyphilis [tabes dorsalis]).

Neurological disease/injury leading to DU


CVA (stroke):

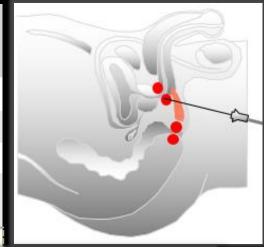
- 50% urinary retention in acute setting (75%: acontractility) (cerebral shock)
- DO: most common long term bladder dysfunction
- **Parkinson disease:** < 20% DU
- **Multisystem atrophy: 52-95%** DU (atrophy of efferent nerve system)
- **Multiple sclerosis: 20%** DU (plaque in LS cord)
- LS cord trauma/ HIVD
- Radical urological, gynecological, or rectal surgery (pelvic plexus injury)
- Infectious disease of nervous system

(Guillain-Barré syndrome or herpes zoster, neurosyphilis [tabes dorsalis]).


A multitude of nervous system disease/ injury can lead to DU.

Major etiologies, sites of dysfunction and pathogenic mechanisms in DU

High percentage of LUT neurologic deficits in DU patients


	Etiology subgroups of DU					
	CVA	Postlumbar spine surgery	Postradical hysterectomy	Idiopathic	Overall DU	p value
Patient no.	10	35	5	10	60	
Age	63.7 ± 12.1	56.5 ± 18.1	66.8 ± 7.8	67.7 ± 18.1	60.4 ± 17.0	0.191
Sex	7 M, 3 F	17 M, 18 F	0 M, 5 F	4M,6F	28 M, 32 F	0.079
DM Sacral neuropathy in NE	70% (7) 0%	28.6% (10) 54.3% (19)	0% 0%	20.0% (2) 0%	31.7% (19) 31.7% (19)	0.020 <0.001
BCR (+)	60.0% (6)	31.4% (11)	20.0% (1)	70.0% (7)	41.7% (25)	0.067
EMG of EUS DeN ReIN Recruitment Preserved Decreased Absent	0% 90.0% (9) 0% 80.0% (8) 20.0% (2)	31.4% (11) 68.6% (24) 8.6% (3) 62.9% (22) 28.6% (10)	0% 100.0% (5) 20.0% (1) 60.0% (3) 20.0% (1)	20.0% (2) 50.0% (5) 30.0% (3) 60.0% (6) 10.0% (1)	21.7% (13) 71.7% (43) 11.7% (7) 65.0% (39) 23.3% (14)	0.095 0.108 0.437
NCV Decreased amplitude	50.0% (5)	82.9% (29)	80.0% (4)	60.0% (6)	73.3% (44)	0.143

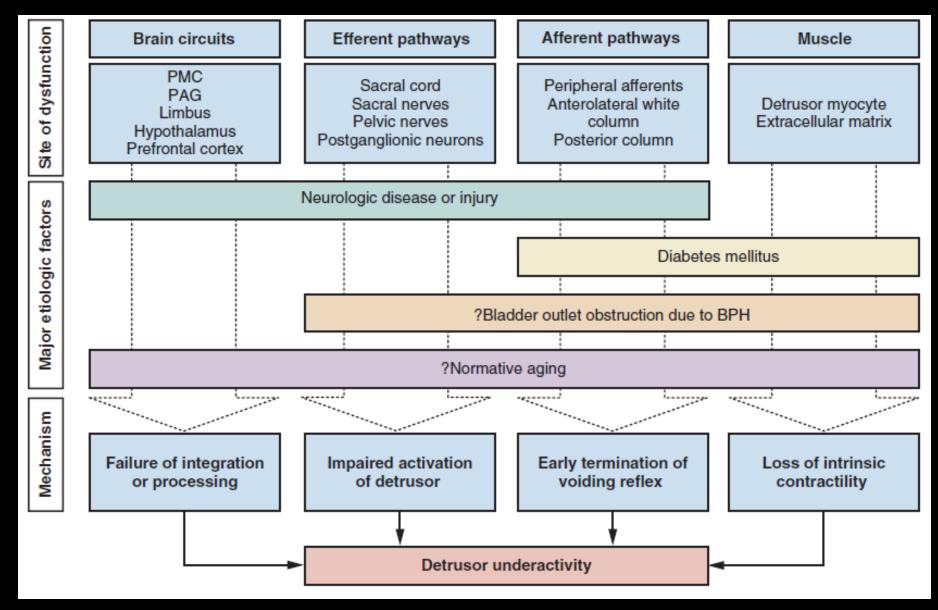
High percentage of LUT neurologic deficits in DU patients

	Etiology sul					
	CVA	Postlumbar spine surgery	Postradical hysterectomy	Idiopathic	Overall DU	p value
Patient no.	10	35	5	10	60	
Age	63.7 ± 12.1	56.5 ± 18.1	66.8 ± 7.8	67.7 ± 18.1	60.4 ± 17.0	0.191
Sex	7 M, 3 F	17 M, 18 F	0M, 5F	4M,6F	28 M, 32 F	0.079
DM	70% (7)	28.6% (10)	0%	20.0% (2)	31.7% (19)	0.020
Sacral neuropathy in NE	0%	54.3% (19)	0%	0%	31.7% (19)	<0.001
BCR (+)	60.0% (6)	31.4% (11)	20.0% (1)	70.0% (7)	41.7% (25)	0.067

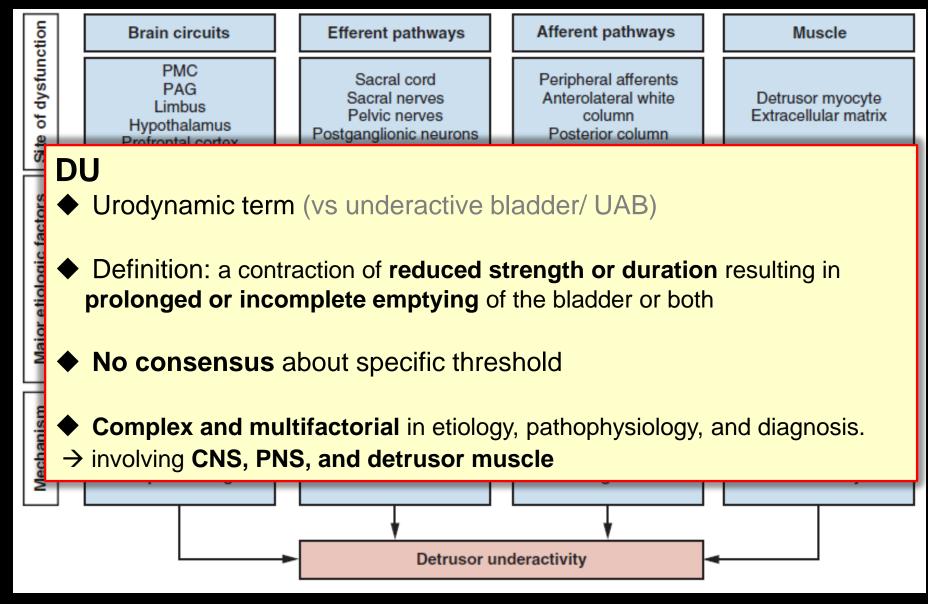
DeN Urodynamic DU with occult LUT neuropathy

(BCR dysfunction, pudendal neuropathy, and the urethral sphincter neuropathy)

Decreased

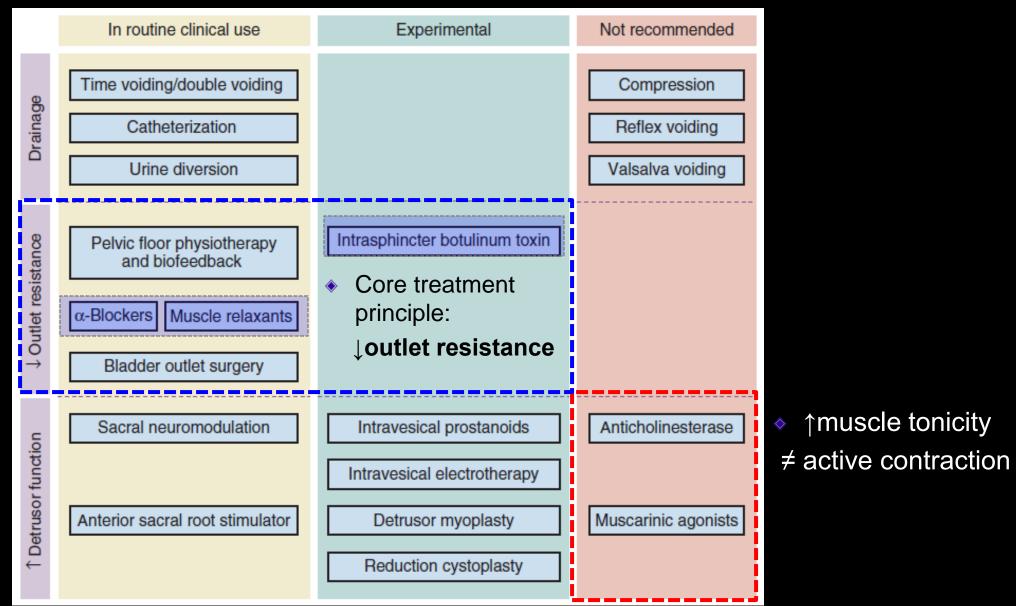

Recruitme Preserved

Absent 20.0% (2) 28.6% (10) 20.0% (1) 10.0% (1) 23.3% (14)


NCV

Decreased amplitude 50.0% (5) 82.9% (29) 80.0% (4) 60.0% (6) 73.3% (44) 0.143

Etiopathogenesis of DU


Etiopathogenesis of DU

Management Options in Detrusor Underactivity

Management Options in Detrusor Underactivity

Summary

- Incompletely understood etiology and pathogenesis of DU/ UAB
 - a diverse range of factors and mechanisms
- Confirmed etiologic factors: neurologic injury/ disease, DM Probable factors: aging, BOO
- Pathophysiologic mechanisms
 - Myogenic
 - Neurogenic: brain/ spinal cord dysfunction, efferent nerve dysfunction, afferent nerve dysfunction